您当前所在的位置:首页 > bv娱乐资讯 > bv娱乐点评 bv娱乐点评
期权的角度计算保障费率
2015-11-03

2015-11-03 高级研究员陈振方 


基本思路

基于期权的角度,对互联网金融平台的合同实质上就是一份看跌期权,保就是该看跌期权的价格。因此,可以构建一种基于B-S期权定价模型的看跌期权定价公式,以计量保的大小,为合理确定保提供了参考价格。


Black-Scholes 期权定价模型概述

1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。他们创立和发展的布莱克——斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。结果,两篇论文几乎同时在不同刊物上发表。所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。瑞士皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。

  v B-S期权定价模型及其假设条件

1、P2P年化投资回报率(原话股票价格)服从对数正态分布;

2、在期权有效期内,无风险利率和P2P年化投资期望回报率和价格波动率(股票资产期望收益变量和价格波动率)是恒定的;

3、市场无摩擦,即不存在税收和交易成本;

4、股票资产在期权有效期内不支付红利及其它所得(该假设可以被放弃);

5、该期权是欧式期权,即在期权到期前不可实施(即债权不可在第三方平台转让);

6、金融市场不存在无风险套利机会;

7、金融资产的交易可以是连续进行的;

8、可以运用全部的金融资产所得进行卖空操作(现实中P2P没有卖空市场,但可以在投资平台转让)。

 v B-S定价公式


C—期权初始合理价格

L—期权交割价格

S—所交易金融资产现价

T—期权有效期

r—连续复利计无风险利率

σ2—年度化方差

N()—正态分布变量的累积概率分布函数

在此应当说明两点:

第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年复利一次,而r要求利率连续复利。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+ r0)或r0=Er-1。例如r0=0.06,则r=LN(1+0.06)=0.0583,即100以583%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。

第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274


看跌期权定价公式的推导

B-S模型是看涨期权的定价公式,根据售出—购进平价理论(Put-callparity)可以推导出有效期权的定价模型,由售出—购进平价理论,购买某股票和该股票看跌期权的组合与购买该股票同等条件下的看涨期权和以期权交割价为面值的无风险折扣发行债券具有同等价值,以公式表示为:

移项得:P=C+Le(-rT)-S,将B-S模型代入整理得:

此即为看跌期权初始价格定价模型,其中:

P—期权初始合理价格

L—期权交割价格

S—所交易金融资产现价

T—期权有效期

r—连续复利计无风险利率

σ2—年(季)度化方差

N()—正态分布变量的累积概率分布函数